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The Kneser Graph

In 1979, Lovasz gave a spectral proof of the Erdés—Ko—Rado Theorem.

Theorem (The Erdés—Ko—Rado Theorem)
Let n > 2k and F C ([Z]) be an intersecting family, i.e, SN'T # 0 VS, T € F. Then

n—1
< .
rfr_(k_l)

3/15



The Kneser Graph

In 1979, Lovasz gave a spectral proof of the Erdés—Ko—Rado Theorem.

Theorem (The Erdés—Ko—Rado Theorem)
Let n > 2k and F C ([Z]) be an intersecting family, i.e, SN'T # 0 VS, T € F. Then

n—1
< .
n< (1)

Equivalently, a(KG, k) = (Zj)
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Eigenvalues and The Hoffman Bound

Theorem (Hoffman 70's)

Let S C V be an independent set of a d-regular graph G = (V,E). Let Amin be the
least eigenvalue of its adjacency matrix. Then

S| <|V]—,
S| < VIR
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Let S C V be an independent set of a d-regular graph G = (V,E). Let Amin be the
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Erdos-Ko-Rado Combinatorics

Cambridpe wdien in sdemond mathamasio T

Sets
Words
Groups
Matrices

CHRISTOPHER GODSIL
KAREN MEAGHER

Partitions
Permutations
Vector Spaces

Finite Geometries

®© 6 6 6 6 6 o o o

Perfect Matchings
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Two elements x, y € X are disjoint if x Ay = 0.

Let X* be the set of maximal elements of a finite meet-semilattice (X, <).

Let ® be the disjointness graph of (X, <), i.e., x ~y if x Ay =0 for all x,y € X*.
For each x € X, let v, be the vector indexed by maximal elements x* € X* such that

(x*) 1 if x < x*;
Vi (X¥) =
0 otherwise.

If (X, <) is a meet-semilattice, then ® = 3" s (0, x) vy, .

X
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Regularity Assumptions

Natural semilattices often
@ are graded: X = {0} U Xy U - U X1 UXS,
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Regularity Assumptions

Natural semilattices often
@ are graded: X = {0} U Xy U -+ X1 LU X,
@ admit natural group actions,
@ and have invariant Madbius functs: ux = p(0, x) = (0, x") Vx,x" € X, 0 < k < n.

e
‘l

121
(REed)
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Zeta Decomposition

Define Zx =3 cx, VeV, as the k-th zeta matrix of a graded meet-semilattice (X, <).
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Define Zx =3 cx, VeV, as the k-th zeta matrix of a graded meet-semilattice (X, <).

Theorem (Zeta Decomposition)

Let (X, <) be a graded meet-semilattice such that y is rank-invariant. Then the
disjointness graph ® of (X, <) admits the following decomposition:

n
b = Z /Lka.
k=0

@ The Zi's have non-negative eigenvalues that are easier to compute.
e For sufficiently regular (X, <) the zeta matrices commute ...

@ ... eigenvalues of ® are then an alternating sum of the eigenvalues of the Z;'s.
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Permutations

Let X = S, be the group of permutations of [n].
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Let X = S, be the group of permutations of [n].

X is the set of maximal elements of the (n x n)-chessboard complex (X, <) where
X = {{(il,jl), o (i)} € <["] ;i [”]> Cin,. ik distinet, i, ...k distinct}.
Its disjointness graph @, is known as the derangement graph D, = Cay(S,, Dy).

Theorem (Deza—Frankl '79, Cameron—Ku '03, Larose-Malvenuto '04, Renteln '07,

Ellis, Friedgut—Pilpel '08, Godsil-Meagher '09)

For all n > 2, we have a(D,) = (n— 1)\
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The Derangement Graph
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I\ = m Z XA(W)-
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Determinantal and recursive expressions for 7, were determined by Renteln '07.
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The Derangement Graph

The eigenvalues 1), of D, are much more difficult to compute than the Kneser graph.

Zx

7r€D

Determinantal and recursive expressions for 7, were determined by Renteln '07.

Since D, is the disjointness graph ®, of the (n x n)-chessboard complex, we have

Dp=9,= Zukzk = Z (—1)*Z.

k=0

The zeta matrices 7, commute.
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Eigenvalues of the Derangement Graph

Open Question: Lovasz-type result (closed forms) for the eigenvalues of D,?

the eigenvalues of the perfect matching graph M(2k) for k < 5. Ideally, we
SHASTOR PR COPL would like to have a closed form for all the eigenvalues of all the perfect
matching graphs, but this seems to be a very difficult problem. Toward this

Theorem (L. '23)

Let A = (A1,...,A¢) F n and ny be the \-eigenvalue of D,,. Then
= (-1,

where D), is the number of \-colored derangements.
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A-Colored Permutations and Derangements

Let A = (4,4,2) - 10.
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o

(1,4)(2,3)

413|121
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A-Colored Permutations and Derangements

Let A = (4,4,2) - 10.

Take o € Sym([A1]) and assign colors to symbols so that cycles are monochromatic.
(1,4)(2,3)

o E T

D) := # A-colored permutations such that no white symbol gets sent to itself.
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Closed Forms?

# A-colored permutations = hy(1,1)h\(1,2)--- hy(1, A1) =: HY(N).

=180
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Closed Forms?

# A-colored permutations = hy(1,1)h\(1,2)--- hy(1, A1) =: HY(N).

=180

# A-colored derangements Dy ~ H'(\)e, !

(L. '23) Explicit closed form for Dy derived via the calculus of finite differences.
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Character Sums of Derangements

Cambridge Studies in Advanced Mathematics 62

Enumerative
Combinatorics

Volume 2

7.63. a. [2+] For A  n define

d= )" xw),

WED,

where ®,, denotes the set of all derangements (permutations without fixed

points) in &,,. Show that

n
Yo disi= Y (=1 H ekt b
pymm k=0
b. [2+] Deduce from (a) that for 1 < k <n,
An n—1
dijaniy = (—1)"—f( _)D- +(—1)"—‘( . )
(j.1m=7) j j j

where D; = #D; (discussed in Example 2.2.1).
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Immanants of the Complete Graph K,

Let A F n be an integer partition.

The A-immanant of a n X n matrix A is defined such that

Imm,, (A Z X (0) ALo(1)A2,0(2) " * Ano(n)-
g€S,

For x(1") = sgn, we recover the determinant. For x(") = 1, we recover the permanent.

(L. '23) Closed form expressions for Immy(J, — /) where J, is the all-ones matrix:

Immy(Jp = 1) = > XM0) (1= 010(1) -+ (1 = Gno(m) = >_ X (0) =

oc€Sy oceD,

Other combinatorial /binary matrices with ‘nice’ immanants?
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oc€Sy oceD,

Other combinatorial /binary matrices with ‘nice’ immanants?

That's all. Thanks!
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